US009092581B2

a2 United States Patent (10) Patent No.: US 9,092,581 B2
Borkowski et al. 45) Date of Patent: Jul. 28, 2015
(54) VIRTUALIZED COMMUNICATION SOCKETS 2007/0053350 Al 3/2007 Spink etal.
FOR MULTI-FLOW ACCESS TO MESSAGE 2008/0030327 Al* 2/2008 Yoshizawa 340/540
2008/0109586 A1* 52008 Godiwala et al. .. 710/305
CHANNEL INFRASTRUCTURE WITHIN CPU 2008/0320501 Al* 12/2008 Lietal. 719/324
. . 2009/0037665 Al* 2/2009 Tsien 7110141
(71) Applicant: Intel Corporation, Santa Clara, CA 2009/0089579 Al* 4/2009 Murase et al. .. 713/164
(as) 2009/0193164 Al* 7/2009 Ajanovic et al. ... 710/107
2009/0249098 Al* 10/2009 Hanetal. ..o 713/322
(72) Inventors: Daniel G. Borkowski, Lunenburg, MA %8}(1);82 é;g ég ﬁ} . égg}? gbtfﬂ X ot al 210/314
(US); Krishnakanth V. Sistla, Portland, czdicer etal. e
OR (US) FOREIGN PATENT DOCUMENTS
CA (US) WO 2014/058759 Al 4/2014
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent s extended or adjusted under 35 International Search Report and Written Opinion received for PCT
U.S.C. 154(b) by 241 days. L .
Patent Application No. PCT/US2013/063647, mailed on Jan. 23,
(21) Appl. No.: 13/648,139 2014, 11 Pages.
(22) Filed: Oct. 9, 2012 * cited by examiner
(65) Prior Publication Data Primary Examiner — Tuan Dao
US 2014/0101355 A1 Apr. 10, 2014 (74) Attorney, Agent, or Firm — Carrie A. Boone, P.C.
(51) Tnt.CL (57) ABSTRACT
GO6F 9/54 (2006.01) A message channel optimization method and system enables
GOG6F 13/40 (2006.01) multi-flow access to the message channel infrastructure
(52) US.CL within a CPU of a processor-based system. A user (pcode)
CPC oo GO6F 13/4059 (2013.01) employs a virtual channel to submit message channel trans-
(58) Field of Classification Search actions, with the message channel driver processing the trans-
None action “behind the scenes”. The message channel driver thus
See application file for complete search history. allows the user to continue processing without having to
block other transactions from being processed. Each transac-
(56) References Cited tion will be processed, either immediately or at some future
time, by the message channel driver. The message channel
U.S. PATENT DOCUMENTS optimization method and system are useful for tasks involv-
5557798 A * 0/1996 Skeen ef al 705/35 ing message channel transactions as well as non-message
6055618 A 4/2000 Thorson channel transactions.
2002/0138659 Al* 9/2002 Trabarisetal. 709/313

2003/0056020 Al 3/2003 Chaudhry et al.

8 Claims, 7 Drawing Sheets

hardware event when message
channel fransaction completes

l 400

fime . 3)0 3o message \/
task 2 start (chanr;f;griver)
1 i : 0 : 402

304
issue message J 7

channel
transaction (TX)

} 306

TX gueued by
message
channel driver

task 1a end

data processing

task 2 end

and soon...

|
i
104
' task 1b start
108

404
406
results
processing

108 407
task 1b end
107

continue other tasks...

US 9,092,581 B2

Sheet 1 of 7

Jul. 28, 2015

U.S. Patent

(NOS1)
HOd

(NOZL) ING

(NOS1L)
NdD

(g081)
HOd

(9021) ING

Eooi (8091) 14D

(g0G1)

005 \»

(V09lL) IdD

(vo8l1)
HOd

(V0Z1) ING

(V0G1)
NdD

| 8Inbi4

US 9,092,581 B2

Sheet 2 of 7

Jul. 28, 2015

U.S. Patent

(OLL)
ananb

(02) 1IpUURYD
abessaw

(08) 100}

(09)
JOALIP [ouUBYD
abessaw

00l \»

"\

(M02)
M |puueyd

(M08) J8ynq

(08) sio0)

abessaw
[enuiA

(902)
Z |]suueyo

309) 'aIon

(Mot) sseuppe
)oBq||ed y Jasn

(30€) (3 Moy} apoad) 3 Jesn

(g08) Jaunq

(08) sl001

abessaw
[enuiA

(v02)
| [oUUBYD

€09) °dIDA

(got) ssauppe
Noeq|ed ¢ 1asn

(g0¢) (z moy. apoad) z Jasn

(v08) J84nq

(08) sl00)

abessaw
[enuiA

v09) "AIDOA

(VOtv) sseuppe
Moeqjea | Jasn

(vog) (1 Moy apoad) | Jasn

Z 2inbi14

US 9,092,581 B2

Sheet 3 of 7

Jul. 28, 2015

U.S. Patent

""*UO 0S pue

91¢

pua g ysel

p

Buissooo.id ejep

vic

A

b

Hels ¢ ¥sel

¢le

A

h

801

101

901

GolL
pus | Mse]
(6] 74 0L
Buissaooid
\ synsal
80¢ €01
[
auop X1
0
90¢ 1
— €

(XL) uonoesuey
[puuByD
abessaw anssi

4 .

¥0¢ 4
uoneledaid ejep

\ A

AV4 L
Hels | XSk} v

A

¢ 2.nbi4

US 9,092,581 B2

Sheet 4 of 7

Jul. 28, 2015

U.S. Patent

**SySB] JOYJ0 dNUIUOD

101
pus g} ¥se}
10V A 901
Buissaoold
\ sjnsal
0¥ Il S0l
Jels gqi yse) v
140174 -
\ yoeqleo
0V
coL
Hels
JOALIp [pUURBYD
\ abessow

0oy

f

sej9jdwoo uoijoesue.) jpuLRyd
abessaul Usym JUSAS aiempiey

"**UO 0S pue

142>

pus Z yse)

Buisseoo.id ejep

g

cle

A

Hels ¢ Yse)

ole

A

8

80¢

pus B} jse)

JOALID [ouUBYD
abessauu
Aq pananb x|

P

90¢

A

(X 1) uonoesuen
[puueyo
obessow anssi

y0€

A

uoneiedaid eiep

¢0¢€

A

Mels el yse)

)

00¢

f awi
" n n

 2inbi4

US 9,092,581 B2

Sheet S of 7

Jul. 28, 2015

U.S. Patent

(82) baljnd puas™ |enuiA jpuueyd abessaw
‘7 uonouny |dv

($8) Inocawin ypm jeoisAyd jjod jpuueyo abessew
:Z uonouny sadjvpy

(zg) |1eoisAyd 0y puss” |suueyo abessaw
'} uonouny sadidy

08

(97) puss™ |enuIA [uueyD abessaw
-g uonouny |dv

(y72) peal |enuiA jpuueyd abessaw
-g uonouny |dv

(z2)
Asnq Jauueyo obessawl jenyIA S

-} uonodun} |dv

G 2.nbi14

US 9,092,581 B2

Sheet 6 of 7

Jul. 28, 2015

U.S. Patent

8Ll

oLl

auop

uonoesuel)
puas $9)ojdwod Jasn

A

Ssalppe Yoeq||eo
3y} 0} uonouny Yoeq|ies
8y} uni 0} jpulay 8sned
0] JUdA® Uk sialsibal
JBALIp jpuURyD abessaw

h

|[ouueyo abessaw
ul passaosoud
s| abessaw

1427 *

|[ouueyo abessaw 0}
[2UUBYD [BNLIA S Jasn
WwoJ} uoioesuel)
Slajsuel) JanLp
|[ouueyo abessoaw

é
Asnq |jauueyo
obessouwl si
0

0195

AT

Jasn Aq uonoesuel)
[puueyo abessaw
sanenb JaAup
|[ouueyo abessaw

801 +

Ssalppe yoeq|ed
e sloysibal Jasn

901 t

|[auueyo abessaw
[BNMIA SH O} uonoUNy
puss |V Senss! Jasn

Asng Jauueyd
abessow jeniA si

0

>
«

00l
g a.nbi{

US 9,092,581 B2

Sheet 7 of 7

Jul. 28, 2015

U.S. Patent

041

891

991

auop

uonoesuel)
pea. s8)a|dwod Jasn

f

Jayng wo.j
|[puueyo abessaw Jo
SJUSJUOD SOABLIIDI Jasn

A

ssalppe Yoeq|ed
By} 0} UoIOUN} Yorg||eD
By} UniJ 0} [oUIDY 9SNed
0] JUSAS Uk sJo)sibal
JOALIP jpuuRyD abessaw

h

|[ouueyo abessow
ui passaooud
s| obessow

ol 1

|jouueyo abessaw 0}
[pUUBYD [BNUIA S J9SN
wolj uonoesued}
slajsuel) JoAlp
[puueyo abessaw

2ol

¢
Asng |jauueyo
obessauw si

Jasn Aq uonoesuely

|jouueyo abessow
sonanb JaAup
|[puueyo abessaw

861 1

SSaJppe ¥oeq|eod
e sJo)sibas Josn

961 t

|[ouueyo ebessoawl
[eNMIA S) 0} UoidUN;
peal |y senss! Jasn

1215

Asnq jauueyo
abessaw |enuin S

o)

ot

0G1
J @inbi4

US 9,092,581 B2

1
VIRTUALIZED COMMUNICATION SOCKETS
FOR MULTI-FLOW ACCESS TO MESSAGE
CHANNEL INFRASTRUCTURE WITHIN CPU

TECHNICAL FIELD

This application relates to multiprocessor systems, por-
table machine code, and message channel transaction pro-
cessing.

BACKGROUND

FIG. 1 is a simplified block diagram of a multiprocessor
system 500, according to some embodiments. The multipro-
cessor system 500 includes N central processing units (CPUs)
150A,150B, . .., 150N (collectively, “CPUs 150”), which are
coupled to N-1 specialized busses, known as quick path inter-
connect (QPI) busses 160A,160B, .. ., 160N-1 (collectively,
“QPIbusses 160”). The QPI busses 160, specifically designed
for the CPUs, speed up communication between the CPUs
150. The CPUs may also be coupled to one or more volatile
memories (not shown).

Also featured in the multiprocessor system 500 are up to N
peripheral controller hubs (PCHs) 1804, . . ., 180N (collec-
tively, “PCHs 180”) coupled to the CPUs 150 via up to N
specialized busses, known as direct media interface (DMI)
busses 170A, 170B, . . . , 170N. The PCHs 180 interface
between the CPUs 150 and one or more peripheral devices of
the multiprocessor system 500. The PCHs 180 may include
display, input/output (I/O) control, a real-time clock, and
other functions and may connect to an integrated display as
well as other peripheral devices, such as a keyboard, a mouse,
a non-volatile storage device, and so on.

For communication between endpoints within the proces-
sor of a multiprocessor system 500 or a single processor-
based system, a message channel is used. The message chan-
nel is the transmission medium for these communications,
and may be thought of as a type of “tunnel” or “subway”
between end points inside the processor. There may be many
message channel endpoints, and a message may be sent from
any endpoint to any other endpoint, with the endpoints being
functional entities within the processor. Portable machine
code, or pcode, is used to communicate between the entities,
and the pcode has its own endpoint for sending messages to
other endpoints. (No endpoint sends an autonomous message
to the pcode, as the only message thatis received by the pcode
endpoint is aresponse to a message that the pcode originated.)
Power management request (PMReq) messages go to other
entities using the QPI bus, which is similar to the message
channel, except that the QPI bus is an external bus/interface.
The message channel, by contrast, is strictly internal to the
processor.

In CPU-based systems, such as a single-processor system
or the multiprocessor system 500 of FIG. 1, a message chan-
nel is used by many disparate pcode flows and functions.
These functions may be used to read and write encore control
registers, issue PMReqs, and send messages to other platform
entities (e.g., other CPUs 150, PCHs 180). The pcode uses the
message channel quite frequently, from hundreds of times per
millisecond to thousands of times per millisecond.

Some newer multiprocessor systems are designed in such a
way that the message channel may become blocked at various
times, such as during a frequency transition. Previous multi-
processor systems did not have this issue, as their message
channel interfaces were always fully functional. So, the pcode
in previous projects could use the message channel in a

10

15

20

25

30

35

40

45

50

55

60

65

2

“blocking” manner by sending the transaction onto the mes-
sage channel, and waiting in a tight loop for the completion of
the transaction.

For newer multiprocessor systems, the use of “blocking”
transactions on the message channel is deemed unacceptable
because the blocking transaction can potentially lock up
pcode for several tens of microseconds. The blocking trans-
actions thus lead to a higher latency for other (non-message-
channel-related) functions and impact the performance of the
CPU. In addition, there is a risk of a deadlock because the
message channel is blocked by some function that is waiting
for something from the pcode via a sideband interface, but the
pcode is blocked waiting for a message channel transaction to
complete.

Additionally, PMreq messages require arbitration for use
of'asingle buffer in a PMReq engine (PME).PMreq messages
go over the message channel to the PME, and then over the
QPI bus 160 to another CPU 150 (or over the DMI bus 170 to
the PCH 180). As part of the PMreq protocol correctness, the
PMEwill wait for a completion (CMP) from the other CPU/
PCH, and will keep the PMReq buffer locked until the
completion is actually received. In this case, if a blocking
message channel transaction is used, the pcode will be locked
up for the entire round-trip duration of the PMreq/CMP
exchange. There may be delays on the other CPU (due to a
frequency change, etc.), which further prolongs the duration
of the lock-up.

Thus, there is a continuing need for a solution that over-
comes the shortcomings of the prior art.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advan-
tages of this document will become more readily appreciated
as the same becomes better understood by reference to the
following detailed description, when taken in conjunction
with the accompanying drawings, wherein like reference
numerals refer to like parts throughout the various views,
unless otherwise specified.

FIG. 1 is a simplified block diagram of a multiprocessor
system, according to some embodiments;

FIG. 2 is a simplified block diagram of the message chan-
nel optimization method and system, according to some
embodiments;

FIG. 3 is a flow diagram showing task flow for two tasks,
according to some embodiments;

FIG. 41is aflow diagram showing task flow for the same two
tasks as in FIG. 3, this time using the method and system of
FIG. 2, according to some embodiments;

FIG. 5 is a simplified block diagram showing the tools used
by the optimization method and system of FIG. 2, according
to some embodiments;

FIG. 6 is a flow diagram following a message channel send
operation as processed by the message channel optimization
method and system of FIG. 2, according to some embodi-
ments; and

FIG. 7 is a flow diagram following a message channel read
operation as processed by the message channel optimization
method and system of FIG. 2, according to some embodi-
ments.

DETAILED DESCRIPTION

In accordance with the embodiments described herein, a
virtual message channel and driver are disclosed for enabling
multi-flow access to the message channel infrastructure
within a CPU of a processor-based system. Each pcode flow

US 9,092,581 B2

3

that uses the message channel is assigned a virtual channel
identifier. Each flow with a virtual channel identifier can
register a callback address and can submit one message chan-
nel transaction for processing. The transaction will be pro-
cessed, either immediately or at some future time, by a mes-
sage channel driver.

In the following detailed description, reference is made to
the accompanying drawings, which show by way of illustra-
tion specific embodiments in which the subject matter
described herein may be practiced. However, it is to be under-
stood that other embodiments will become apparent to those
of ordinary skill in the art upon reading this disclosure. The
following detailed description is, therefore, not to be con-
strued in a limiting sense, as the scope of the subject matter is
defined by the claims.

FIG. 2 is a simplified block diagram of a message channel
optimization method 100, or optimization method 100,
according to some embodiments. The optimization method
100 employs virtualized communication sockets for enabling
multi-flow access to the message channel infrastructure of a
processor-based system. The optimization method 100 uses a
message channel driver 50 to interface between virtual chan-
nels 70A, 706, . . ., 70K (collectively, “virtual channels 70”")
and a physical message channel 20 that is used for commu-
nication between endpoints within a processor of the proces-
sor-based system.

In some embodiments, the optimization method 100 solves
the issues described in the background section for systems
such as the multiprocessor system 500 of FIG. 1, by using the
virtual message channels 70 rather than blocking use of the
message channel 50. Although the optimization method 100
addresses a problem found in multiprocessor systems, the
method may also be used in single-processor systems.

Users, denoted as user 1 30A, user 230B, . . ., user K 30K
(collectively, “users 30”), represent portions of the pcode
flow throughout the multiprocessor system. Tools 80, consist-
ing of application programming interface (API) and helper
functions, are available to both the message channel driver 50
and to the users 30.

In some embodiments, the method 100 assigns a virtual
channel identifier (VOID) 60 to each user (pcode flow) 30 that
uses the message channel 20. Virtual channel identifiers 60A,
606, ...,60K (collectively, “VCIDs 607) are available to each
user 30A, 30B, . . ., 30K, respectively. Each pcode flow 30
with a VCID 60 is also capable of registering a callback
address. Callback addresses 40A, 40B, . . ., 40K are featured
in FIG. 2 for users 1, 2, . . ., K, respectively (collectively,
“callback addresses 40”). The callback address 40 for each
user 30 enables the message channel driver 50 to return to the
pcode flow at the appropriate address, following processing
of'the message channel transaction for that user. Each user 30
with a VCID 60 can submit one message-channel transaction
for processing.

In some embodiments, each user 30A, 306, . . . , 30K
includes a respective buffer 90A,90B, .. ., 90K (collectively,
“buffers 90”). The buffers 90 are temporary storage for mes-
sage channel data that is to be returned following a message
transaction. In some embodiments, the message channel
driver 50 retrieves the returned data to the respective buffer 90
when processing message channel transactions.

Further, in some embodiments, the message channel driver
50 includes a queue 110 to keep track of transactions that are
waiting to be processed. When processing a succeeding trans-
action, the message channel driver will retrieve the transac-
tion from the queue 110. In some embodiments, the queue
110 is a first-in-first-out queue.

10

15

20

25

30

35

40

45

50

55

60

65

4

The users 30 of FIG. 2 are presumed to be those pcode
flows in which message channel transactions are to take place.
Other pcode flows may not engage in message channel trans-
actions. Such pcode flows are thus not assigned a VOID 60, in
some embodiments. Nevertheless, as is shown below, in some
embodiments, pcode flows for both message channel trans-
actions and non-message channel transaction benefit from the
optimization method 100 described herein.

In some embodiments, the message channel transaction is
processed, either immediately or at some future time, by the
message channel driver 50. The message channel driver 50
registers an event that causes a kernel within the processor-
based system to run a callback function when the message
channel transaction has completed. The user (pcode flow) 30
that submitted the transaction becomes notified of the
completion when its callback function runs, enabling the user
to take any further desired actions subsequent to the comple-
tion.

FIG. 3 is a flow diagram illustrating a method 200 in which
two tasks are sequentially processed by the message channel
20, according to some embodiments. The operations 200 of
FIG. 3 are performed either in a single processor-based sys-
tem or in a multiprocessor system, such as the system 500 of
FIG. 1. The method 200 features multiple steps being per-
formed in time periods denoted to the left of each step. Two
tasks, task 1 and task 2, are to be performed. The tasks are part
of the pcode flow 30 referred to earlier, with the pcode flow
issuing a message channel transaction in a single processor-
based system or in the multiprocessor system 500. Task 1
involves a message channel transaction while task 2 does not.

For those tasks involving message channel transactions,
the task is divided into 1) preparation of data, 2) a transaction
on the message channel, 3) processing of the results of the
message channel, and 4) other data processing that may not be
message channel related.

At a first time period, (time period 1), task 1, a first pcode
flow (user) 30, begins (block 200). Following data prepara-
tion (block 202) at time period 2, the pcode flow 30 issues a
message channel transaction at time period 3 (block 204),
thus invoking the message channel 20. The first pcode flow 30
waits for the transaction to complete (block 206), with no
further processing taking place. In this example, there is a
timeout period of 100 time units, and the pcode flow 30 is
blocked during that entire period, known as a blocking trans-
action. At time period 103, the results of the message trans-
action are processed (block 208), and task 1 is completed
(block 210).

The pcode flow 30 further includes a second task, task 2.
Task 2 commences at time period 106 (block 212). Data
processing takes place at time period 107 (block 214), and
task 2 is completed by time period 108 (block 216), with
additional tasks to be performed following the completion of
task 2.

FIG. 4, by contrast, features the same two tasks being
sequentially performed on either a single processor-based
system or on a multiprocessor system such as the system 500
of FIG. 1, this time using the message channel optimization
method 100 of FIG. 2, according to some embodiments. The
first task, task 1, however, is separated into two parts, task 1la
and task 15, which are processed separately.

Initially, the first part of the first task, task 1a, is processed
in a manner similar to how task 1 was processed in FIG. 3. At
afirsttime period, (time period 1), task 1, a first pcode flow 30
begins (block 300). Following data preparation at time period
2 (block 302), the pcode flow 30 issues a message channel
transaction at time period 3 (block 304), thus invoking the
message channel 20. In this example, rather than having the

US 9,092,581 B2

5

first pcode flow 30 wait for the transaction to complete (as in
block 206 of FIG. 3), the message channel transaction is
queued by the message channel driver 50 in time period 4
(block 306). Task 1a, the first part of task 1, is completed at
time period 5 (block 308).

As with the method 200 (FIG. 3), in the method 300 (FIG.
4), the pcode flow 30 further includes the second task, task 2.
Task 2 commences at time period 6 (block 310). Data pro-
cessing takes place at time period 7 (block 312), and task 2 is
completed by time period 8 (block 314), with additional tasks
to be performed following the completion of task 2. Note that,
in FIG. 3, task2 completed at time period 108, while, in the
current example, task 2 completed one hundred time units
sooner, at time period 8.

Returning to the processing of the first task, when the
message channel transaction is issued (block 304), the trans-
action is being processed, just as in FIG. 3. And, just as in the
FIG. 3, the transaction uses 100 time periods to be processed.
InFIG. 4, the transaction processing has not been disrupted or
changed, instead, the transaction is queued by the message
channel driver 50, allowing the task 1a processing to com-
plete such that the next task, task 2, may be processed.

Meanwhile, in some embodiments, when the message
channel transaction that was initiated during task 1la com-
pletes, a hardware event is generated, in time period 103
(block 400). The message channel driver 50 responds to the
hardware event by issuing a callback to the address of the
second part of task 1, task 15, in time period 104 (block 402).
The callback address 40 for the given pcode flow (user) 30
contains the address. Task 15 commences in time period 105
(block 404). Since the message channel transaction is com-
pleted, the results processing is performed, in time period 106
(block 406), and task 15 ends, in time period 107 (block 407).

It is instructive to compare the operations 200 of FIG. 3
with the optimized operations 300, 400 of FIG. 4. In FIG. 3,
two pcode flow tasks, task 1 and task 2, are processed in 108
time periods. In FIG. 4, the same two pcode flow tasks, task 1
and task 2, with the first task further being subdivided into
tasks 1a and 15, are processed in 107 time periods, for an
improvement of one time period. Furthermore, however,
there is a further opportunity for additional tasks to be pro-
cessed sequentially following the completion of task 2, with
95 time periods being available between time period 8 and
time period 103. And, either tasks that issue message channel
transactions (such as task 1) or tasks that do not issue message
channel transactions (such as task 2) may be processed during
these 95 time periods. Thus, the operations 300, 400 of FIG.
4 provide additional opportunities for efficient processing of
message channel transactions, without the need to block one
or more transactions.

Further, in some embodiments, the processing of the task 2
transactions commences much earlier with the method 300
than in the method 200. And, by being able to process more
tasks sequentially in the 95 additional time periods, the cycles
may provide a functional benefit to the system processing the
transactions. In some embodiments, the pcode issues hun-
dreds of message channel transactions per millisecond, so the
potential benefit of using the cycles may be significant.

Recall that both the message channel driver 50 and the
users 30 use tools 80 to assist with performing the optimiza-
tion method 100. FIG. 5 shows the tools 80 used by the
optimization method 100, in some embodiments. There are
four functions 72, 74, 76, and 78, which are classified as
application programming interface (API) functions and two
functions 82 and 84, which are deemed helper functions.
Functionally, the user 30 interfaces with the driver 50 (via the
API functions 72, 74, 76, 78), and the driver interfaces with

25

40

45

50

55

6

the processor. The API functions, therefore, enable the users
to access the processor, via the driver 50.

In some embodiments, the first API function 72, is_vir-
tual_message_channel_busy, enables the user 30 to deter-
mine whether its virtual channel is busy or idle. The VCID 60
for the user 30 is provided as an input to this function 72.
Recall that, based on the VCID 60, the virtual channel 70 is
assigned to the user 30. If the user 30 senses a request on its
virtual channel 70, another request cannot be sent until the
first message has been processed. Thus, before proceeding
with the second message, the user 30 ascertains, using the API
function 72, whether its virtual message channel 70 is not
busy. Further, if the message channel request is one that
returns data, the user 30 uses the API function 72 to determine
whether the request has been completed, thus enabling the
user to retrieve the returned data. The API function 72 is thus
essentially a handshaking mechanism between the user 30
and the message channel driver 50. The API function 72
returns a run/busy bit for the virtual message channel 70
specified by the VCID 60 for the user 30.

In some embodiments, the second API function 74, mes-
sage_channel_virtual_read, returns the contents of the virtual
message channel 70 specified by the input, VCID 60. In some
embodiments, a 64-bit message channel payload result is
returned by the API function 74. The message channel driver
50 returns the read information to the buffer 90 associated
with the user 30. Thus, upon invoking this read function 74,
the user 30 will read the contents of the buffer 90.

In some embodiments, the third API function 76, mes-
sage_channel_virtual_send, is the means by which the user
30 sends a message on the message channel 20, using its
virtual message channel 70. Recall that the message channel
20 is used by many disparate pcode flows and functions
between endpoints in the processor, such as to read and write
uncore control registers, issue power management requests
(PMRegs), as well as to send messages to other platform
entities (e.g., other CPUs 150, PCHs 180 in the multiproces-
sor system 500). Again, the VCID 60 for the user 30 is pro-
vided as an input to this function 76. Once the message is on
the virtual message channel 70, the message channel driver 50
is able to process the message on the message channel 30.

In some embodiments, the fourth API function 78, mes-
sage_channel_virtual_send_PMreq, is a special version of
the third API function 76, which processes a PMreq transmis-
sion. As with the other API functions, the VCID 60 for the
user 30 is provided as an input to this function 78. PMreq,
short for power management request, is a special type of
transaction used by the QPI bus that interconnects between
CPUs (FIG. 1).

While both the users 30 and the message channel driver 50
use the above API functions, only the driver 50 uses the helper
functions 82 and 84, in some embodiments. The helper func-
tions allow facile movement of data between the virtual chan-
nels 70 and the physical message channel 20. The first helper
function, message_channel_send_to_physical 82, enables
the message channel driver 50 to send data to the physical
message channel 20. The second helper function, mes-
sage_channel_poll_physical_with_timeout 84, enables the
message channel driver 50 to poll the physical message chan-
nel for completion of an operation, and includes a timeout.

In some embodiments, the message channel driver 50 reg-
isters an event that causes a kernel within the single proces-
sor-based system or the multiprocessor system to run a call-
back function when the message channel transaction has
completed. The event is a hardware event, such as an inter-
rupt, that indicates that the message channel 20 is no longer

US 9,092,581 B2

7

busy, which means that the last thing the driver put in the
message channel has completed.

In some embodiments, on behalf of a user (pcode flow) 30,
the message channel driver 50 puts a message from the
assigned virtual channels 70 of the user into the message
channel 20. The message channel driver 50 understands
whether the message is to return data or not. Where data is to
be returned, the message channel driver 50 retrieves the data
and puts it in the buffer 90 dedicated to the user 30. Subse-
quentto the retrieval by the driver 50, the user 30 employs API
read function 74 to retrieve the contents of the buffer 90.

Once the processing of a message channel transaction on
behalf of one user is completed, the message channel driver
50 may proceed to “connect” another virtual channel 70 to the
message channel 20 on behalf of another user 30.

FIGS. 6 and 7 are flow diagrams showing operations of the
message channel optimization method 100 in processing a
send operation and a read operation, respectively, according
to some embodiments. FIG. 6 illustrates a send operation by
one of the users 30 of either a single processor-based system
or a multiprocessor system, such as the multiprocessor sys-
tem 500 of FIG. 1, while FIG. 7 illustrates a read operation.

First, FIG. 6 describes the send operation. Before the user
30 can issue any transaction on the message channel 20, the
user-assigned virtual message channel 70 must be available,
in some embodiments. Thus, the user issues the first API
function 72 to determine whether the virtual message channel
70 is available (block 102). Once available, the user 30 issues
an API send function, either the general API send function 76
or the specialized API send PMreq function 78 (block 104).
The user 30 also registers a callback address (block 106) that
the message channel driver 50 will use to return to a prede-
termined address of the user (block 106). At this point, the
message channel (send) transaction is queued by the message
channel driver 50 (block 108). This frees up the user 30 to
continue with other transaction processing.

When the send transaction is issued by the user 30, the
message channel 20 may not be available. The pcode of a
typical multiprocessor system uses the message channel quite
frequently, from hundreds to thousands of times per millisec-
ond. Thus, until the message channel 20 is not busy, the send
transaction is not processed (block 110). Once the message
channel 20 is available, a hardware event, such as an interrupt,
will notify the message channel driver 50 that the message
channel is available.

The message channel driver 50, however, is processing
virtual message channel transactions for a number of different
users. Once the message channel 20 is available and once the
user is at the top of the message channel driver’s queue 110,
the message channel driver 50 sends the message channel
transaction from the user’s virtual channel 70 to the message
channel 20 (block 112). Once at the message channel 20, the
message channel transaction is processed (block 114). The
message channel driver 50 then registers an event. This event
causes the kernel of the single processor-based system or
multiprocessor system to run the callback function to the
callback address 40 of the user 30 (block 116). The user 30 is
thus able to complete the send transaction (block 118).

FIG. 7 shows similar operations, this time where the user
30 is transmitting a read operation to the message channel 20.
Again, the user 30 first ensures that the virtual channel 70 is
available (block 152). Once available, the user 30 issues the
API read function 74 to its virtual message channel 70 (block
154). The user also registers its callback address (block 156)
so that the message channel driver 50 will be able to get back

10

15

20

25

30

35

40

45

50

55

8

to the user pcode flow 30 once the message channel transac-
tion is complete. The message channel driver 50 queues the
transaction (block 158).

Once the message channel 20 is available (block 160) and
once the user is at the top of the message channel driver’s
queue 110, the message channel driver 50 sends the message
channel transaction from the user’s virtual channel 70 to the
message channel 20 (block 162). Once at the message chan-
nel 20, the message channel transaction is processed (block
164). The message channel driver 50 then registers an event.
This causes the kernel of the single processor-based system or
multiprocessor system to run the callback function to the
callback address 40 of the user 30 (block 166). Since the
transaction is a read transaction, the message channel driver
50 put the contents of the read in the buffer 90 of the user 30.
The user 30 thus retrieves the contents of the buffer 90 (block
168) and completes the read transaction (block 170).

The message channel optimization method and system 100
thus enable multi-flow access to the message channel infra-
structure within a CPU of a single processor-based system or
multiprocessor system. The user employs a virtual channel to
submit message channel transactions, with the message chan-
nel driver processing the transaction “behind the scenes”.
Each transaction will be processed, either immediately or at
some future time, by the message channel driver. Tasks
involving message channel transactions as well as non-mes-
sage channel transactions are processed more efficiently, in
some embodiments.

While the application has been described with respect to a
limited number of embodiments, those skilled in the art will
appreciate numerous modifications and variations therefrom.
It is intended that the appended claims cover all such modi-
fications and variations as fall within the true spirit and scope
of the invention.

We claim:

1. A non-transitory computer-readable medium including
code, when executed, to cause a machine to perform the
following operations:

issue a first application programming interface (API) func-

tion comprising a virtual channel identifier (VCID) as
input to the API to determine the availability of a virtual
message channel, wherein the virtual message channel
becomes an assigned virtual message channel in
response to an idle indication;

issue a message channel transaction to the assigned virtual

message channel, the message channel transaction to be
queued by a message channel driver;

wherein the message channel transaction is a second API

function;

indicate a callback address to be used by the message

channel driver to return to upon completion of the mes-
sage channel transaction;

queue the message channel transaction by the message

channel driver;

process a succeeding transaction following the message

channel transaction without waiting for the message

channel transaction to be completed;

receive a hardware event to indicate that a physical mes-
sage channel is available; and

transfer the message channel transaction from the
assigned virtual message channel to the physical mes-
sage channel in response to receiving the hardware
event.

2. The non-transitory computer-readable medium of claim
1, wherein the second API function is a send operation.

3. The non-transitory computer-readable medium of claim
1, wherein the second API function is a read operation.

US 9,092,581 B2

9

4. The non-transitory computer-readable medium of claim
3, the code, when executed, to cause the machine to further
perform the following operations:

retrieve data from the physical message channel; and

store the data in a buffer, wherein the buffer is associated
with the assigned virtual channel.

5. A method to process message channel transactions with-
out performing blocking operations, the method comprising:

issuing, by a user, a message channel transaction to a mes-
sage channel, wherein the user comprises a portion of
portable machine code (pcode) that is executed by a
processor in a processor-based system and the message
channel transaction is received into a virtual message
channel assigned to the user, the issuance of the message
channel transaction further comprising:

sending, by the user, an application programming interface
(API) function to the virtual message channel;

sending, by the user, a second API function to the virtual
channel once the first API function returns an idle indi-
cation;

registering, by the user, a callback address;

15

10

queuing, by a driver, the message channel transaction,
wherein the user is able to further process pcode with-
out waiting for the message channel transaction to
complete;
receiving, by the driver, a hardware event indicating that
the message channel is available;
transferring, by the driver, the message channel transac-
tion of the user from the virtual message channel to
the message channel, wherein the message channel
transaction is carried by the message channel to an
endpoint;
returning, by the driver, to the user pcode using callback
address provided by the user; and
completing, by the user, execution of the message chan-
nel transaction specified by the second API function.
6. The method of claim 5, wherein the first API function
tells the user whether the virtual message channel is busy or
not.
7. The method of claim 5, wherein the second API function
is a send transaction.
8. The method of claim 5, wherein the second API function
is a read transaction.

